28
loading...
This website collects cookies to deliver better user experience
import pandas as pd
scores = {'name':['Hugo,', 'David', 'René'],
'city':['Guatemala', 'Estanzuela', 'Zacapa'],
'score':[50,70,100]}
df = pd.DataFrame(scores)
df
df['score']
df.score
to return the same result.df['name_city'] = df['name'] + '_' + df['city']
df[df['score']>69]
iris = pd.read_csv('iris.csv')
iris.to_csv ('iris-output.csv', index=False)
import pandas as pd
emissions = pd.DataFrame \
({"country": ['China', 'United States', 'India'],\
"year": ['2018', '2018', '2018'],\
"co2 emissions": [10060000000.0,5410000000.0,2650000000.0]})
emissions
pd.set_option('max_rows', 2)
emissions
pd.options.display.float_format = '{:,.2f}'. format
planets['number'][0]/planets ['mass'][0]
planets['number'][0].astype(float)
planets['year'][0].astype(str)
planets['year_dt'] = pd.to_datetime(planets['year'], format='%Y')
planets['year_dt']