22
loading...
This website collects cookies to deliver better user experience
dogs = pd.read_csv(r'Downloads/ShelterDogs.csv')
dogs.head()
dogs.info()
dogs['date_found'] = pd.to_datetime(dogs['date_found'])
dogs
dogs.shape
type_breed = dogs[['name', 'sex', 'breed']]
type_breed.head()
dogs.iloc[1]
dogs.iloc[3:7]
dogs.iloc[:10]
dogs.iloc[-2:]
.columns will allow us to change all of the columns at once. However, it’s important to get the ordering right to avoid mislabeling them.
.rename will allow us to change individual columns. You can pass a single column to change or multiple columns, using a dictionary with the original name and the new name.
dogs.rename(columns = {'posted' : 'date_posted',
'breed' : 'dog_breed',
'adoptable_from' : 'date_adoptable',
'coat' : 'coat_type'},
inplace = True)
dogs.head()
Operator | Purpose |
---|---|
== | Equal to |
!= | Not Equal |
> | Greater than |
< | Less than |
>= | Greater than or Equal to |
<= | Less than or Equal to |
female = dogs[dogs.sex == 'female']
female
breeds = dogs[dogs.dog_breed != 'Unknown Mix']
breeds
over_two = dogs[dogs.age > 2]
over_two
under_four = dogs[dogs.age < 4]
under_four
likes_people = dogs[(dogs.likes_people == 'yes') & (dogs.likes_children == 'yes')]
likes_people
cats_female = dogs[(dogs.get_along_females == 'yes') | (dogs.get_along_cats == 'yes')]
cats_female
suitable = dogs[(dogs.neutered == 'yes') & (dogs.age >= 4)]
suitable
breed = dogs[(dogs.dog_breed.isin(['Staffordshire Terrier Mix', 'Labrador Retriever Mix', 'German Shepherd Dog Mix']))]
breed
breed = dogs[(dogs.dog_breed.isin(['Staffordshire Terrier Mix', 'Labrador Retriever Mix', 'German Shepherd Dog Mix']))].reset_index()
breed
neutered_known = dogs.loc[dogs.neutered.notnull()]
neutered_known
neutered_unknown = dogs.loc[dogs.neutered.isnull()]
neutered_unknown
dogs.fillna("not available")