21
loading...
This website collects cookies to deliver better user experience
$ pip install numpy
# Single Dimensional
1. import numpy as np
2. n1 = np.array([10,20,30,40])
3. n1
# Multi Dimensional
4. n2 = np.array([[10,20,30,40],[40,30,20,10]])
5. n2
# Example 1
# Using np.zeros()
1. import numpy as np
# np.zeros((row,column))
2. n1 = np.zeros((1,2))
3. n1
# Example 2
4. n2 = np.zeros((5,5))
5. n2
# Example 1
# Using np.full()
1. import numpy as np
# np.full((row,column),Any number)
2. n1 = np.full((3,2),10)
3. n1
# Example 2
4. n2 = np.full((5,7),5)
5. n2
# Example 1
# Using np.arange()
1. import numpy as np
# np.arange(start_number,last_number)
2. n1 = np.arange(10,20)
3. n1
# Example 2
# np.arange(start_ number,last_number,Step)
# Step means printing number after certain gap number.
4. n2 = np.arange(10,50,5)
5. n2
# Generating specific Random number from starting index to ending index
# Example 1
# Using np.random.randint()
1. import numpy as np
# np.arange(From Start_Number,Till last_number, Array of numbers)
# Array of Numbers mean how much actual values you want in array.
2. n1 = np.random.randint(1,100,10)
3. n1
# Example 2
4. n2 = np.random.randint(10,50,8)
5. n2
# Example 1
# Using np.shape()
1. import numpy as np
# np.array([array_1,array_2])
2. n1 = np.array([[1,2,3,4],[4,5,6,7]])
3. n1.shape
# n1.shape = (row, column)
4. n1.shape = (4,2)
5. n1.shape
# Vertical Stack [Using vstack()]
# Stacking array elements vertically that is row wise.
# Example:
# array([[10,20,30],
# [40,40,60]])
1. import numpy as np
2. n1 = np.array([10,20,30])
3. n2 = np.array([40,50,60])
# np.vstack((array_1,array_2))
4. np.vstack((n1,n2))
# Horizontal Stack [Using hstack()]
# Stacking array elements horizontally that is column wise.
# Example:
# array([10,20,30,40,50,60])
# np.hstack((array_1,array_2))
5. np.hstack((n1,n2))
# Column Stack [Using column_stack()]
# Stacking elements column wise
# np.column_stack((n1,n2))
6. np.column_stack((n1,n2))
# Intersection using NumPy which means showing common elements from arrays.
1. import numpy as np
2. n1=np.array([10,20,30,40,50,60])
3. n2=np.array([50,60,70,80,90])
# np.intersect1d(array_1,array_2)
4. np.intersect1d(n1,n2)
# Difference using NumPy which means showing unique elements from arrays.
# np.setdiff1d(array_1,array_2) - Shows unique elements in array_1
5. np.setdiff1d(n1,n2)
# np.setdiff1d(array_2,array_1) - Shows unique elements in array_2
6. np.setdiff1d(n2,n1)
# Addition of NumPy Arrays
1. import numpy as np
2. n1=np.array([10,20])
3. n2=np.array([30,40])
# Total of all elements present in array
4. np.sum([n1,n2])
# Adding elements row wise
5. np.sum([n1,n2],axis=0)
# Adding elements column wise
6. np.sum([n1,n2],axis=1)
# Basic Addition
7. n3=np.array([10,20,30])
# Adding 1 to each and every element of array
8. n3=n3+1
9. n3
# Basic Subtraction
# Subtracting 1 from each and every element of array
10. n3=n3-1
11. n3
# Basic Multiplication
# Multiple 2 with each and every element of array
12. n3=n3*2
13. n3
# Basic division
# Divide 2 by each and every element of array
14. n3=n3/2
15. n3
# Mean
1. import numpy as np
2. n1=np.array([10,20,30,40,50,60])
3. np.mean(n1)
# Median
4. np.median(n1)
# Standard Deviation
5. np.std(n1)
# Saving NumPy Array
1. import numpy as np
2. n1=np.array([10,20,30,40,50])
3. np.save('Your NumPy Array Name',n1)
# Loading NumPy Array
4. n2 = np.load('Previous Numpy Array Name')
5. n2