27
loading...
This website collects cookies to deliver better user experience
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
data = pd.read_csv('iris_data.csv')
data
onehot = []
for i in data['Species']:
if (i == 'setosa'):
onehot.append(1)
elif (i == 'virginica'):
onehot.append(3)
else:
onehot.append(2)
data['Species'] = onehot
sns.countplot(data['Species'])
plt.show()
sns.FacetGrid(data, hue ="Species",height = 6).map(plt.scatter, 'Sepal.Length', 'Petal.Length').add_legend()
plt.show()
sns.pairplot(data, hue="Species")
plt.show()
X = data.iloc[ : , : 4]
y = pd.DataFrame(data['Species'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
model = LogisticRegression()
model.fit(X_train, y_train)
X_new = np.array([[5, 2.9, 1, 0.2]])
print("X_new.shape: {}".format(X_new.shape))