25
loading...
This website collects cookies to deliver better user experience
from nltk.corpus import stopwords
set(stopwords.words('english'))
{'ourselves', 'hers', 'between', 'yourself', 'but', 'again', 'there', 'about', 'once', 'during', 'out', 'very', 'having', 'with', 'they', 'own', 'an', 'be', 'some', 'for', 'do', 'its', 'yours', 'such', 'into', 'of', 'most', 'itself', 'other', 'off', 'is', 's', 'am', 'or', 'who', 'as', 'from', 'him', 'each', 'the', 'themselves', 'until', 'below', 'are', 'we', 'these', 'your', 'his', 'through', 'don', 'nor', 'me', 'were', 'her', 'more', 'himself', 'this', 'down', 'should', 'our', 'their', 'while', 'above', 'both', 'up', 'to', 'ours', 'had', 'she', 'all', 'no', 'when', 'at', 'any', 'before', 'them', 'same', 'and', 'been', 'have', 'in', 'will', 'on', 'does', 'yourselves', 'then', 'that', 'because', 'what', 'over', 'why', 'so', 'can', 'did', 'not', 'now', 'under', 'he', 'you', 'herself', 'has', 'just', 'where', 'too', 'only', 'myself', 'which', 'those', 'i', 'after', 'few', 'whom', 't', 'being', 'if', 'theirs', 'my', 'against', 'a', 'by', 'doing', 'it', 'how', 'further', 'was', 'here', 'than'}
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
example_sent = "This is a sample sentence, showing off the
stop words filtration."
stop_words = set(stopwords.words('english'))
word_tokens = word_tokenize(example_sent)
filtered_sentence = [w for w in word_tokens if not w in
stop_words]
filtered_sentence = []
for w in word_tokens:
if w not in stop_words:
filtered_sentence.append(w)
print(word_tokens)
print(filtered_sentence)
import spacy #Import spacy library
nlp = spacy.blank("en") #get english stopwords
from spacy.lang.en.stop_words import STOP_WORDS #Put all the
stopwords into a variable called STOP_WORDS
print(STOP_WORDS) #Print all the stopwords
len(STOP_WORDS) #Length of stopword
nlp.vocab[“the”].is_stop #Checking if a word is a stopword
for word in doc: #Print all the stopwords in the given doc
if word.is_stop == True:
print(word)
for word in doc: #Remove all the stopwords in the given doc
and print remaining doc
if word.is_stop == False:
print(word)
[word for word in doc if word.is_stop == False] #Remove all
the stopwords in the given doc and print remaining doc
separating by words
STOP_WORDS.add(“Lol”) #Add new stopword into corpus as you wish
STOP_WORDS.remove(“Lol”) #Remove new stopword into corpus as you wish