15
loading...
This website collects cookies to deliver better user experience
pip install
or pip3 install
):from sklearn.linear_model import LinearRegression
import pandas
from sklearn import preprocessing
import numpy as np
df = pandas.read_csv('insurance.csv')
X = np.array(df["age"]).reshape((-1, 1))
y = np.array(df["charges"])
model = LinearRegression()
model.fit(X, y)
X_predict = [[35]]
y_predict = model.predict(X_predict)
print(y_predict)
>[12186.1766594]
X = np.array(df["age"]).reshape((-1, 1))
with:X = list(zip(df["age"], df["bmi"]))
X_predict = [[35, 45]]
y_predict = model.predict(X_predict)
print(y_predict)
>[17026.20170095]