40
loading...
This website collects cookies to deliver better user experience
model = Sequential()
// convolutional layer
model.add(Conv2D(50, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu', input_shape=(32, 32, 3)))
//convolutional layer
model.add(Conv2D(75, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(125, kernel_size=(3,3), strides=(1,1), padding='same', activation='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
// flatten output of conv
model.add(Flatten())
// hidden layer
model.add(Dense(500, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(250, activation='relu'))
model.add(Dropout(0.3))
// output layer
model.add(Dense(10, activation='softmax'))